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Stabilization of a class of sandwich

systems via state feedback

Xu Wang, Anton A. Stoorvogel, Ali Saberi,

Håvard Fjær Grip, Sandip Roy, and Peddapullaiah Sannuti

Abstract—We consider the problem of state-feedback stabilization for

a class of sandwich systems, consisting of two linear systems connected in

cascade via a saturation. In particular, we present design methodologies

for constructing semiglobally and globally stabilizing controllers for such

systems when the input is itself subject to saturation. The design is carried

out under a set of assumptions that are proven to be both necessary and

sufficient. The presented design methodologies are extensions of classical

low-gain design methodologies developed for stabilizing linear systems

subject to input saturation. The methodologies can be further extended

to multilayer sandwich systems, consisting of an arbitrary number of

cascaded linear systems with saturations sandwiched between them.

I. INTRODUCTION

Many physical systems can be modeled as interconnections of

several distinct subsystems, some of which are linear and some of

which are nonlinear. One common type of structure consists of two

linear systems connected in cascade via a static nonlinearity. We refer

to such systems as sandwich systems, because the static nonlinearity

is sandwiched between the two linear systems.

In this paper we focus on sandwich systems where the sand-

wiched nonlinearity is a saturation. Saturations can occur due to

the limited capacity of an actuator, limited range of a sensor, or

physical limitations within a system. Physical quantities such as

speed, acceleration, pressure, flow, current, voltage, and so on, are

always limited to a finite range, and saturations are therefore a

ubiquitous feature of physical systems. Our primary goal is to develop

design methodologies for semiglobal and global stabilization of such

systems by state feedback. To make our design more general, we also

assume that the input is subject to saturation. The resulting system

configuration is illustrated in Fig. 1.
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Fig. 1. Sandwich system subject to input saturation

In the absence of an input saturation, sandwich systems are a

special case of cascade systems, where the output of a linear system

affects a nonlinear system. Studies on such systems was initiated

in [1] and continued elsewhere, for example, in [2]. In [1], [2] the

nonlinear system is assumed to be stable, and the goal is to investigate

Xu Wang, Ali Saberi, and Sandip Roy are with the School of Electrical
Engineering and Computer Science, Washington State University, Pullman,
WA 99164-2752, USA. Their work is partially supported by National Science
Foundation grant NSF-0901137 and NAVY grants ONR KKK777SB001 and
ONR KKK760SB0012. E-mail: {xwang,saberi,sroy}@eecs.wsu.edu

Anton A. Stoorvogel is with the Department of Electrical Engineering,
Mathematics, and Computing Science, University of Twente, P.O. Box 217,
7500 AE Enschede, The Netherlands. E-mail: A.A.Stoorvogel@utwente.nl

Håvard Fjær Grip is with the Department of Engineering Cybernetics,
Norwegian University of Science and Technology, O.S. Bragstads plass 2D,
NO-7491 Trondheim, Norway. Phone: +1 (509) 715-9195. Fax: +47 73 59
02 43. His work is supported by the Research Council of Norway. E-mail:
grip@itk.ntnu.no

Peddapullaiah Sannuti is with the Department of Electrical and Computer
Engineering, Rutgers University, 94 Brett Road, Piscataway, NJ 08854-8058,
USA. E-mail: psannuti@ece.rutgers.edu

whether instability can occur when the linear system is also stable.

By contrast, the goal of this paper is construction of stabilizing

controllers for the overall sandwich system.

Stabilization of sandwich systems has been studied previously, for

example, by Taware and Tao (see [3]). The main technique used in

[3], and in other related works, is based on approximate inversion

of the sandwiched nonlinearity. Inversion is a viable approach for

some types of nonlinearities, a prominent example being the deadzone

nonlinearity, which is right-invertible. Saturations, however, have a

limited range and are therefore not amenable to inversion except in

a small region; thus, a different approach is required.

The problem considered in this paper is related to the problem of

stabilizing a single linear system subject to input saturation. Several

important results on this topic have appeared in the literature, starting

with the works of Fuller [4], [5] and continuing with the works

of Sontag, Sussmann, and Yang [6]–[8] (see also [9], [10]). These

works led to the development of low-gain design methodologies for

semiglobal stabilization, and scheduled low-gain design methodolo-

gies for global stabilization [11], [12]. The scheduled low-gain design

methodology is based on the concept of scheduling, developed by

Megretski [13]. Also, in the context of global stabilization, another

design methodology that was introduced is the nested saturation

methodology [14].

Recent research has also focused on linear systems subject to state

constraints, where the controller must guarantee that the output of a

linear system remains in a given set (see, e.g., [15]). Such an approach

can be used to control sandwich systems, by designing controllers in

order to avoid saturation altogether. However, this is only possible

for initial conditions belonging to some bounded set of admissible

initial conditions, and the approach can therefore not be used for

semiglobal or global stabilization.

The design methodologies presented in this paper are general-

izations of the classical low-gain and scheduled low-gain design

methodologies for stabilization of linear systems subject to input

saturation, and we therefore refer to them as generalized low-gain

design methodologies. We also discuss how these methodologies

can be extended to handle multilayer sandwich systems, consisting

of an arbitrary number of cascaded linear systems with saturations

sandwiched between them.

II. PROBLEM FORMULATION

We consider the sandwich system illustrated in Fig. 1, described

by the following equations:

L1 :

{

ẋ = Ax+Bσ(u), x ∈ R
n, u ∈ R

p,

z =Cx, z ∈ R
q,

(1a)

L2 : ω̇ = Mω +Nσ(z), ω ∈ R
m. (1b)

The function σ(·) represents a standard component-wise saturation

with limits at ±1.

To simplify the exposition, we define the state vector χ = [x′,ω ′]′,
which combines the states of the L1 and L2 subsystems. When both

of the saturations in (1) are inactive, the dynamics of the system are

described by the linear system equations

χ̇ = A χ +Bu, A =

[

A 0

NC M

]

, B =

[

B

0

]

. (2)

Our goal is to design state-feedback controllers to stabilize the

system (1), and toward this end, we make the following assumption:

Assumption 1: The pair (A ,B) is stabilizable and the eigenvalues

of A are located in the closed left-half plane.
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Remark 1: Note that, due to the cascaded structure of the system,

the eigenvalues of A consist of the eigenvalues of A together with

the eigenvalues of M.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR

STABILIZABILITY

We say that the origin of the system (1) is semiglobally stabilizable

if, for each compact set W ⊂ R
n+m, there exists a state-feedback

controller that renders the origin asymptotically stable with W

contained in the region of attraction. We say that the origin is globally

stabilizable if there exists a state-feedback controller that renders the

origin globally asymptotically stable. The following theorem relates

these notions of stabilizability to the conditions in Assumption 1:

Theorem 1: The origin of (1) is semiglobally stabilizable if, and

only if, Assumption 1 is satisfied. Similarly, the origin is globally

stabilizable if, and only if, Assumption 1 is satisfied.

Proof: Necessity of the conditions in Assumption 1 is established

by noting that the system (1) can only be semiglobally or globally

stabilizable if the linear system description (2), which is valid locally

around the origin, is stabilizable. Hence, the pair (A ,B) must be

stabilizable. Furthermore, it is known from [16] that a linear time-

invariant system can only be semiglobally or globally stabilized by

a saturated input if the eigenvalues of the system are confined to

the closed left-half plane. Both the L1 and L2 subsystems must

be stabilized through saturated inputs, and hence the eigenvalues

of A and M (and therefore of A ) must be in the closed left-half

plane. Sufficiency is established by constructive design of stabilizing

controllers in Section IV.

As Theorem 1 shows, the conditions for semiglobal and global

stabilizability are the same. The intrinsic difference between the two

cases lies in the type of controller that can be used: semiglobal

stabilization can be achieved with a linear controller, whereas global

stabilization can in general only be achieved with a nonlinear

controller (see [4]).

IV. GENERALIZED LOW-GAIN DESIGN

The design methodologies presented in this paper are generaliza-

tions of classical low-gain design methodologies for linear systems

subject to input saturation. The principle behind classical low-gain

design is to create a control law with a sufficiently low gain to keep

the input saturation inactive for all time. In the semiglobal case, the

gain is fixed, based on an a priori given set of admissible initial

conditions; in the global case, the gain is scheduled to be sufficiently

low regardless of the initial conditions.

For the systems considered in this paper, the principle is similar.

However, there are now two saturations, and the problem is more

complex because the sandwiched saturation cannot be made inactive

from the start by using low gain. Instead, the sandwiched saturation

must be deactivated by controlling the states of the L1 subsystem

toward the origin. Conceptually, the control task can therefore be

viewed as consisting of two subtasks. The first subtask is to control

the states of the L1 subsystem toward the origin, in order to deactivate

the sandwiched saturation. Once the sandwiched saturation has been

deactivated, the second subtask consists of controlling the state of

the whole system to the origin without reactivating the sandwiched

saturation. All of this should be accomplished without activating the

input saturation.

To accomplish the two subtasks, the control law is divided into

two terms, referred to as the L1 term and the L1/L2 term. The L1

term is a function of x, and the purpose of this term is to control the

state of the L1 subsystem toward the origin, in order to permanently

deactivate the sandwiched saturation. The gain used in this term is

chosen sufficiently low to avoid activating the input saturation, by

adjusting a low-gain parameter ε1 > 0. The L1/L2 term is a function

of x and ω , and the purpose of this term is to control the states of both

subsystems to the origin once the sandwiched saturation becomes

inactive. The gain of this term is chosen sufficiently low that it does

not interfere with the L1 term’s ability to permanently deactivate the

sandwiched saturation, by adjusting a low-gain parameter ε2 > 0.

A. Semiglobal stabilization

To construct a semiglobally stabilizing class of controllers, we

begin by letting Pε1
denote the unique symmetric positive-definite

solution of the algebraic Riccati equation (ARE)

A′Pε1
+Pε1

A−Pε1
BB′Pε1

+ ε1In = 0. (3)

Define Fε1
:= −B′Pε1

and F̄ := [Fε1
,0] ∈ R

p×(n+m). We continue by

letting Pε2
denote the unique symmetric positive-definite solution of

the ARE

(A +BF̄)′Pε2
+Pε2

(A +BF̄)−Pε2
BB

′
Pε2

+ε2In+m = 0. (4)

Define Fε2
:=−B′Pε2

. The system (1) is now semiglobally stabi-

lized by the control law

u = Fε1
x+Fε2

χ . (5)

In terms of our previous discussion, the term Fε1
x is the L1 term and

the term Fε2
χ is the L1/L2 term. The low-gain parameters ε1 > 0

and ε2 > 0 must be chosen sufficiently small depending on the size

of the set of admissible initial conditions, as shown by the following

theorem:

Theorem 2: Let W ⊂ R
n+m be a compact set, and suppose that

Assumption 1 is satisfied. Then there exists an ε∗1 > 0 such that for

each 0 < ε1 < ε∗1 , there exists an ε∗2 (ε1) > 0 such that for all 0 <
ε2 < ε∗2 (ε1), the controller described by (5) renders the origin of (1)

asymptotically stable with W contained in the region of attraction.

Proof: Consider first the system description (2) with u =
Fε1

x+Fε2
χ , which is valid locally around the origin where both

saturations are inactive. Defining the Lyapunov function candidate

V (χ) = x′Pε1
x+ χ ′Pε2

χ , it is easily confirmed that we obtain the

time derivative

V̇ (χ) =−ε1x′x− x′Pε1
BB′Pε1

x−2x′Pε1
BB

′
Pε2

χ − ε2χ ′χ

−χ ′
Pε2

BB
′
Pε2

χ

=−ε1x′x− ε2χ ′χ − (B′Pε1
x+B

′
Pε2

χ)′(B′Pε1
x+B

′
Pε2

χ).

Thus, we know that the system is locally exponentially stable. Since

χ(0) belongs to the compact set W , there exist compact sets X and

Ω such that x(0) ∈ X and ω(0) ∈ Ω.

Because the eigenvalues of A , and therefore the eigenvalues of

A, are in the closed left-half plane, the solutions of (3) are such that

Pε1
→ 0 as ε1 → 0 [12, Lemma 2.2.6]. Furthermore, the matrix Fε1

=
−B′Pε1

is such that the matrix A+BFε1
is Hurwitz, and it follows

that the eigenvalues of the matrix A +BF̄ are in the closed left-half

plane. This in turn implies that for each ε1 > 0, the solutions of (4)

are such that Pε2
→ 0 as ε2 → 0. From these considerations, we may

conclude that limε1→0 Fε1
= 0, and for each ε1 > 0, limε2→0 Fε2

= 0.

We first investigate the effect of the L1 term alone; that is, the

feedback matrix Fε1
. Since the matrix A+BFε1

is Hurwitz and Fε1
→

0 as ε1 → 0, there exists an ε∗1 > 0 such that for all 0 < ε1 < ε∗1
and for all x(0) ∈ X , the input saturation remains inactive in the

sense that ‖Fε1
x(t)‖ = ‖Fε1

e(A+BFε1
)tx(0)‖ ≤ 1

4 (see [17, Theorem

2.8]). Let ε1 be fixed such that this inequality is satisfied, and define

γ > 0 such that x′Pε1
x ≤ γ implies ‖Cx‖ ≤ 1

4 and ‖Fε1
x‖ ≤ 1

4 . Define

K = {x ∈R
n | x′Pε1

x ≤ γ}, and let T > 0 be chosen large enough that

for all x(0) ∈ X , x(T ) = e(A+BFε1
)T x(0) ∈ K.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 3

Next, consider the complete control law, with both the L1 and

the L1/L2 terms; that is, u = Fε1
x +Fε2

χ . The L1/L2 term can

be partitioned as Fε2
χ = F1,ε2

x +F2,ε2
ω , where F1,ε2

→ 0 and

F2,ε2
→ 0 as ε2 → 0. Since ω(0) ∈ Ω and the input σ(z) to the

L2 subsystem is bounded, we know that there exists a compact set

Ω̄ ⊃ Ω such that for all t ∈ [0,T ], ω(t) ∈ Ω̄. Using the property that

F2,ε2
→ 0 as ε2 → 0, we therefore see that the term F2,ε2

ω can

be made arbitrarily small on the time interval [0,T ] by decreasing

ε2. This, combined with the property that F1,ε2
→ 0 as ε2 → 0,

shows that for small ε2, the control law on the interval [0,T ] can

be viewed as a small perturbation of the control law u = Fε1
x. Thus,

we know that for all sufficiently small ε2, x(T ) ∈ 2K is satisfied

for all χ(0) ∈ W . Accordingly, let ε∗2 (ε1) be chosen small enough

that, for all 0 < ε2 < ε∗2 (ε1) and all χ(0) ∈ W , we have x(T ) ∈ 2K.

Furthermore, let ε∗2 (ε1) be chosen small enough that the following

two properties hold for all 0 < ε2 < ε∗2 (ε1): (i) x′Pε1
x ≤ 4γ and ω ∈ Ω̄

implies V (χ)≤ 9γ; and (ii) V (χ)≤ 9γ implies ‖Fε2
χ‖ ≤ 1

4 .

We can now make several observations. At time T , we know that

x(T ) ∈ 2K and ω(T ) ∈ Ω̄, which means that x′(T )Pε1
x(T )≤ 4γ , and

thus we can conclude that V (χ(T ))≤ 9γ . Furthermore, for all χ such

that V (χ)≤ 9γ , we have x′Pε1
x ≤ 9γ , which means that x ∈ 3K. This

in turn implies that ‖Fε1
x‖ ≤ 3

4 and ‖Cx‖ ≤ 3
4 . Combined with the

expression ‖Fε2
χ‖ ≤ 1

4 , this implies that ‖u‖= ‖Fε1
x+Fε2

χ‖ ≤ 1.

Thus, for all χ such that V (χ)≤ 9γ , both the input saturation and the

sandwiched saturation are inactive. The proof is completed by noting

that when both saturations are inactive, V (χ) is a Lyapunov function.

Thus, χ never escapes from the level set defined by V (χ)≤ 9γ , and

the system therefore behaves like a linear, exponentially stable system

for all t ≥ T .

Remark 2: To implement the semiglobally stabilizing controller, it

is necessary to find appropriate low-gain parameters ε1 and ε2. It is

difficult to derive tight upper bounds ε∗1 and ε∗2 (ε1) analytically, and

thus the parameters are typically found experimentally, by gradually

decreasing them until the desired stability is achieved.

B. Global stabilization

To achieve global stabilization, we use a control law that is very

similar to the semiglobal case. The main difference is that, instead

of being fixed, the low-gain parameters are scheduled as functions of

the state of the system.

Let Pε1(x) be the unique symmetric positive-definite solution of the

ARE (3) with ε1 = ε1(x). Define Fε1(x) :=−B′Pε1(x) and F̄ := [F1,0]∈

R
p×(n+m) (where F1 =−B′P1 and P1 is the solution of (3) with ε1 =

1). Let Pε2(χ) be the unique symmetric positive-definite solution of

the ARE (4) with ε2 = ε2(χ). Define Fε2(χ) =−B′Pε2(χ). When the

scheduled low-gain parameters ε1(x) and ε2(χ) are properly defined,

the system (1) is globally stabilized by the control law

u = Fε1(x)x+ ε1(x)Fε2(χ)χ . (6)

In terms of our previous discussion, the term Fε1(x)x is the L1 term

and the term ε1(x)Fε2(χ)χ is the L1/L2 term.

We now specify our requirements for the scheduled low-gain

parameters ε1(x) and ε2(χ). The function ε1 : Rn → (0,1] must be

continuous and satisfy the following properties:

1) There exists an open neighborhood O of the origin such that

for all x ∈ O, ε1(x) = 1.

2) For any x ∈ R
n, ‖B′Pε1(x)x‖ ≤

1
2 .

3) ε1(x)→ 0 =⇒ ‖x‖→ ∞.

4) For each c > 0, the set {x ∈ R
n | x′Pε1(x)x ≤ c} is bounded.

5) There is a function g : R>0 → (0,1] such that for all x 6= 0,

ε1(x) = g(x′Pε1(x)x).

A particular choice that satisfies the above conditions is

ε1(x) = max

{

r ∈ (0,1] | x′Prx · trace(B′PrB)≤
1

4

}

(7)

(where Pr is the solution of (3) with ε1 = r).

To define ε2(χ), first define

δ := min

{

1

2
,

ℓ

4‖F1‖
,

1

2ρ

}

, ℓ :=
1

2
√

‖P1‖trace(B′P1B)
,

ρ :=
∫ ∞

0
‖Ce(A+BF1)tB‖dt.

(8)

Note that ρ is well-defined because A+BF1 is Hurwitz. The function

ε2 : Rn+m → (0,1] must be continuous and satisfy properties 1–4

above, with x replaced by χ , B replaced by B, Pε1(x) replaced by

Pε2(χ), and the number 1
2 in Property 2 replaced by δ . A particular

choice that satisfies these conditions is

ε2(χ) = max
{

r ∈ (0,1] | χ ′
Prχ · trace(B′

PrB)≤ δ 2
}

(9)

(where Pr is the solution of (4) with ε2 = r).

Theorem 3: Suppose that Assumption 1 is satisfied. Then the

controller described by (6), with ε1(x) and ε2(χ) defined by (7),

(9), renders the origin of (1) globally asymptotically stable.

Proof: We start by noting that the properties of the scheduling

guarantee that ‖Fε1(x)x‖ = ‖B′Pε1(x)x‖ ≤ 1
2 and ‖ε1(x)Fε2(χ)χ‖ ≤

‖B′Pε2(χ)χ‖ ≤ δ ≤ 1
2 . It follows that ‖u‖ ≤ 1, and hence the input

saturation is always inactive.

For sufficiently small χ , both saturations are inactive, and we have

ε1(x) = ε2(χ) = 1. Thus, the system behaves like a linear system with

a linear control law u=F1x+F1χ in a region around the origin. As in

the semiglobal case, it is easy to show that the origin of the resulting

system is locally exponentially stable by using the Lyapunov function

V (χ) = x′P1x+χ ′P1χ .

Define K = {x ∈ R
n | ε1(x) = 1}. We wish to show that whenever

x /∈ K, ε1(x) is strictly increasing with respect to time. Suppose,

for the sake of establishing a contradiction, that ε1(x) is not strictly

increasing when x /∈ K, that is, d
dt ε1(x)≤ 0. Then we obtain

d

dt
(x′Pε1(x)x) =−ε1(x)x

′x− x′Pε1(x)BB′Pε1(x)x

−2ε1(x)x
′Pε1(x)BB

′
Pε2(χ)χ + x′

d

dt

(

Pε1(x)

)

x.

Since d
dt ε1(x)≤ 0, the properties of the ARE imply that d

dt Pε1(x) ≤ 0.

Furthermore,

‖2ε1(x)x
′Pε1(x)BB

′
Pε2(χ)χ‖ ≤ 2ε1(x)‖x‖‖Fε1(x)‖δ

<
2δ

ℓ
ε1(x)‖x‖2‖F1‖ ≤

1

2
ε1(x)x

′x,

where we have used the properties ‖B′Pε2(χ)χ‖ ≤ δ ≤ ℓ
4‖F1‖

,

‖Pε1(x)B‖= ‖Fε1(x)‖ ≤ ‖F1‖, and x /∈ K =⇒ ε1(x)< 1 =⇒ ‖x‖> ℓ.
(The latter implication can be confirmed from (7) by noting that

‖x‖ ≤ ℓ =⇒ x′P1x · trace(B′P1B)≤ 1
4 .)

Combining the above expressions, we obtain d
dt (x

′Pε1(x)x) ≤

− 1
2 ε1(x)x

′x< 0. However, the properties of the scheduling then imply

that d
dt ε1(x) > 0, which yields a contradiction with the assumption

d
dt ε1(x)≤ 0. We have therefore shown that ε1(x) is strictly increasing

when x /∈ K, which implies that x converges to, and remains in, K.

Let t∗ > 0 be such that for all t ≥ t∗, x ∈ K. Then for all t ≥ t∗,

u = F1x+ v, where v = −BPε2(χ)χ . For all t ≥ t∗, the output z of

the L1 subsystem is therefore described by

z(t) =Ce(A+BF1)(t−t∗)x(t∗)+
∫ t

t∗
Ce(A+BF1)(t−τ)Bv(τ)dτ.
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The properties of the scheduling guarantee that ‖v‖ ≤ δ ≤ 1
2ρ . Let

T ≥ t∗ be such that for all t ≥ T , ‖Ce(A+BF1)(t−t∗)x(t∗)‖ ≤ 1
2 . Then

for all t ≥ T ,

‖z(t)‖ ≤ ‖Ce(A+BF1)(t−t∗)x(t∗)‖+

∥

∥

∥

∥

∫ t

t∗
Ce(A+BF1)(t−τ)Bv(τ)dτ

∥

∥

∥

∥

≤
1

2
+

∫ t

t∗

∥

∥

∥
Ce(A+BF1)(t−τ)B

∥

∥

∥
‖v(τ)‖dτ

≤
1

2
+

∫ ∞

0

∥

∥

∥
Ce(A+BF1)tB

∥

∥

∥
dτ

1

2ρ
= 1.

Hence, for all t ≥ T , the sandwiched saturation is inactive, and the

system is therefore described by the equation χ̇ = (A +BF̄)χ −
BPε2(χ)χ . From [13] we know that the origin of this system is

globally asymptotically stable.

Remark 3: To implement the globally stabilizing controller, one

needs to calculate the parameter δ , which is used in the scheduling

(9). This, in turn, requires calculating P1, F1, and ρ . P1 is found by

solving (3) with ε1 = 1, and F1 = −B′P1. After F1 has been found,

ρ can be calculated by numerical integration according to (8).

C. Systems without input saturation

If the system is not subject to any input saturation, then the design

task is simplified. In particular, there is no need to design the L1

term using a low-gain strategy. The L1 term can instead be designed

simply as Fx, where F is any matrix such that A+BF is Hurwitz.

The design of the L1/L2 term can then be carried out as before with

F̄ = [F,0]∈R
p×(n+m) (in the global case, by setting ε1(x) := 1 where

this variable appears in the L1/L2 term). The necessary and sufficient

conditions for semiglobal and global stabilizability are also relaxed

when no input saturation is present; in particular, only the eigenvalues

of M are required to be in the closed left-half plane.

D. Multilayer sandwich systems

The generalized low-gain design methodology presented above

can be extended to handle multilayer sandwich systems, consisting

of an arbitrary number of cascaded linear systems with saturations

sandwiched between them, with or without an additional input satura-

tion. Consider, for example, a multilayer sandwich system consisting

of three linear systems (L1, L2, and L3), with two sandwiched

saturations and an input saturation. Following the same approach as

above, the control law for this system is divided into an L1 term,

an L1/L2 term, and an L1/L2/L3 term. These terms are designed

sequentially with low gains, to first ensure that the sandwiched

saturation between the L1 and L2 subsystems is deactivated, then

to ensure that the sandwiched saturation between the L2 and L3

subsystems is deactivated, and then to ensure that the states of all

three subsystems are brought to the origin.

When there is no input saturation, necessary and sufficient condi-

tions for semiglobal and global stabilization of multilayer sandwich

systems are that (i) the local linear system is stabilizable; and (ii) the

eigenvalues of the subsystems L2,L3, . . . are in the closed left-half

plane. When the input is subject to saturation, the eigenvalues of the

L1 system must also be in the closed left-half plane.

V. SIMULATION EXAMPLE

Consider the system (1) with

A =

[

0 1

0 0

]

, B =

[

0

1

]

, C =

[

1 0

0 1

]

,

M =

[

0 1

−1 0

]

, N =

[

1 0

1 1

]

.
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(a) States (solid, left axis) and control input (dashed, right
axis) for semiglobally stabilizing controller
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(b) States (solid, left axis) and control input (dashed, right
axis) for globally stabilizing controller

Fig. 2. Simulation results

The L1 subsystem has an eigenvalue at the origin of multiplicity

two; thus, it is open-loop unstable. The L2 subsystem has imaginary

eigenvalues at ±1 j; thus, it is marginally stable. Following the

procedure in Section IV-A, we design a semiglobally stabilizing

controller for this system with ε1 = 10−4 and ε2 = 5 ·10−4. Similarly,

we design a globally stabilizing controller according the procedure

in Section IV-B, which gives δ ≈ 0.03. Fig. 2 shows the simulation

results with initial conditions x(0) = [2,2]′ and ω(0) = [1,1]′.

VI. CONCLUDING REMARKS

In this paper we have presented generalized low-gain design

methodologies for semiglobal and global stabilization of sandwich

systems subject to input saturation. We have chosen to focus on this

particular type of system in order to best illustrate the principle of

generalized low-gain design. As discussed in Sections IV-C and IV-D,

however, the design methodology can be applied to a larger class of

sandwich systems with saturations. Current research is focused on

semiglobal and global stabilization by output feedback, as well as

external stabilization problems.
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